
www.manaraa.com

A Recovery Method Supporting User-InteractiveUndo in Database Management SystemsWon-Young Kim1 Kyu-Young Whang2Young-Koo Lee3 Sang-Wook Kim4CS/TR-98-119January 15, 1998
K A I S TDepartment of Computer Science

This work was partially supported by the \Development of a General Purpose MultiuserObject-Storage System with E�cient Support for Variable Length Attributes(2)" projectsponsored by Korea Telecom.1With the Computer Science Department and the Center for Arti�cial Intelligence Research,Korea Advanced Institute of Science and Technology (KAIST), 373-1 Koo-Sung Dong, Yoo-SungKu, Daejon, Korea; email: wykim@mozart.kaist.ac.kr; fax: +82-42-869-3510.2With the Computer Science Department and the Center for Arti�cial Intelligence Re-search (Professor/Director, Database and Multimedia Lab.), Korea Advanced Institute of Sci-ence and Technology (KAIST), 373-1 Koo-Sung Dong, Yoo-Sung Ku, Daejon, Korea; email: ky-whang@mozart.kaist.ac.kr; fax: +82-42-869-3510.3With the Computer Science Department and the Center for Arti�cial Intelligence Research,Korea Advanced Institute of Science and Technology (KAIST), 373-1 Koo-Sung Dong, Yoo-SungKu, Daejon, Korea; email: yklee@mozart.kaist.ac.kr; fax: +82-42-869-3510.4With the Information and Telecommunication Engineering Department, Kangwon NationalUniversity, Chuncheon, Kangwon-Do, Korea; email: wook@cc.kangwon.ac.kr; fax: +82-361-250-6390.

www.manaraa.com

A Recovery Method Supporting User-Interactive Undo inDatabase Management SystemsWon-Young Kim� Kyu-Young Whangy Young-Koo LeezSang-Wook KimxAbstractUser-interactive undo is a kind of recovery facility that allows users to correct mis-takes easily by canceling and reexecuting operations that have already been executed.Supporting user-interactive undo is essential for authoring processes in new databaseapplications such as software engineering, hypermedia, and computer-aided design. Apartial rollback using savepoints supported by commercial database management sys-tems(DBMSs), which allows only cancellation of executed operations, is a restrictedform of user-interactive undo. Although many applications use DBMSs, they have toprovide user-interactive undo by themselves due to lack of support from the DBMSs.Since implementation of user-interactive undo is quite complex, it poses signi�cantburden to application programmers.This paper proposes a new recovery method facilitating user-interactive undo inDBMSs. Such a facility relieves the programmers of implementing user-interactive undothemselves in developing DBMS applications. The method guarantees fast rollback oftransactions that contain user-interactive undos. It also provides users with the bulkundo operation that restores the database to a predetermined point in the past. Thebulk undo operation resembles partial rollback, but di�ers in that it allows a redo thatcancels the bulk undo. Moreover, the performance of the method is comparable to thatof the traditional recovery method in spite of added functionalities.
This work was partially supported by the \Development of a General Purpose Multiuser Object-StorageSystem with E�cient Support for Variable Length Attributes(2)" project sponsored by Korea Telecom.�With the Computer Science Department and the Center for Arti�cial Intelligence Research, KoreaAdvanced Institute of Science and Technology (KAIST), 373-1 Koo-Sung Dong, Yoo-Sung Ku, Daejon,Korea; email: wykim@mozart.kaist.ac.kr; fax: +82-42-869-3510.yWith the Computer Science Department and the Center for Arti�cial Intelligence Research (Pro-fessor/Director, Database and Multimedia Lab.), Korea Advanced Institute of Science and Technology(KAIST), 373-1 Koo-Sung Dong, Yoo-Sung Ku, Daejon, Korea; email: kywhang@mozart.kaist.ac.kr; fax:+82-42-869-3510.zWith the Computer Science Department and the Center for Arti�cial Intelligence Research, KoreaAdvanced Institute of Science and Technology (KAIST), 373-1 Koo-Sung Dong, Yoo-Sung Ku, Daejon,Korea; email: yklee@mozart.kaist.ac.kr; fax: +82-42-869-3510.xWith the Information and Telecommunication Engineering Department, Kangwon National University,Chuncheon, Kangwon-Do, Korea; email: wook@cc.kangwon.ac.kr; fax: +82-361-250-6390.1

www.manaraa.com

1 IntroductionSoftware development[9], hypermedia authoring[4][16], and CAD[10] have recently becomenew database applications as they need to handle increasingly large volumes of data. Trial-and-errors frequently occur in the authoring process of these applications due to users'mistakes or unexpected results of operations. Thus, these applications need a recoveryfacility for canceling the operations already executed and even for reexecuting them.In this paper we de�ne user-interactive undo as a recovery facility[14][2][15][1] thatenables users to cancel or reexecute under users' control the operations that have alreadybeen executed. User-interactive undo consists of two operations: undo and redo. The undooperation restores user's data to the previous state by canceling an executed operation. Wecall the canceled operations undone operations. While in a broad sense the redo operationis an operation that reexecutes the previously executed operation, in this paper, we restrictthe redo operation to the one that reexecutes an undone operation.Although many database management systems(DBMSs) already have a recovery facilitythat can recover databases from various failures by treating the entire authoring processas a transaction, they do not support user-interactive undo. A total transaction rollbackis inappropriate for handling users' trial-and-errors since it forces other operations, whichbear no relation to the errors and may have executed for a long time, to roll back as well.This necessitates a mechanism that cancels parts of the executed operations and reexecutesthe undone operations upon the user's requests without a total transaction rollback. Therecovery methods[11][6][5] used in commercial DBMSs provide such partial rollback usingsavepoints[11][5]. A savepoint can be established at any transaction execution point. Afterexecuting for a while, users can request canceling all the updates performed after thesavepoint when they meet errors or unexpected results. After such a partial rollback,the transaction can resume normal execution. However, this partial rollback facility has acritical limitation that it cannot reexecute the undone operations, and thus, it is not usablein user-interactive undo.Currently, since DBMSs do not support user-interactive undo, the applications do itthemselves. It is complex and di�cult to implement user-interactive undo since it shouldhandle a variety of operations that may be encountered in an application. Moreover, ifan application uses a DBMS, much more overhead is incurred for handling the data theDBMS itself updates. Therefore, providing user-interactive undo in the application thatuses a conventional DBMS imposes severe overhead to the programmer. Since applicationsrequiring user-interactive undo have recently been increasing, a mechanism supportinguser-interactive undo directly in the DBMS would be essential.Until now, the research on user-interactive undo has mainly focused on its models. Themodels de�ne the order and the execution mechanism of their undo and redo. Typicalexamples of user-interactive undo models are the linear undo model[14][2], history undomodel[14], and script model[15][1]. However, there has never been an approach supportinguser-interactive undo directly in a transaction processing system such as a DBMS.In this paper, we propose a new recovery method with which a DBMS can directlysupport user-interactive undo. In particular, we provide this additional facility withoutseriously altering the existing one such as crash recovery used in commercial DBMSs. Wechoose the history undo model[14][2] as our undo model since it has a nice property that2

www.manaraa.com

it can rollback to any previous state.The proposed method has the following characteristics: 1) it provides both (repeated)undo and redo for executed operations in a DBMS while the partial rollback facility providesonly undo operations; 2) it requires little overhead, which enables the performance of ourmethod to be comparable to that of the traditional recovery method that only supportspartial rollback; 3) it fully utilizes the base structure for supporting crash recovery, whichmakes it easy to implement the user-interactive undo in the DBMS; 4) it can reduce theimplementation overhead of application programmers because user-interactive undo couldbe built easily using this facility provided in the DBMS.The paper is organized as follows. In Section 2 we survey three basic user-interactiveundo models. In Section 3 we discuss issues in supporting user-interactive undo in a DBMS.In Section 4 we present a new recovery method for supporting user-interactive undo andanalyze its performance overhead. In Section 5 we summarize and conclude the paper.2 User-Interactive Undo ModelsUser-interactive undo models de�ne the order and the execution mechanism of their undoand redo operations, which are tightly related to their data structures. This section brieyreviews three typical user-interface undo models: the linear undo model[14][2], history undomodel[14], and script model[15][1]. We present the data structures, mechanisms, bene�ts,and shortcomings of each model.The linear undo model maintains two lists: a history list and a redo list. The historylist keeps a sequence of the executed operations that remain in e�ect, i.e., that either havebeen executed and not yet undone or have been redone. The redo list keeps a sequence ofoperations that have been undone. The undo operation starts with the last operation inthe history list. When an operation is undone, it is removed from the history list and putinto the redo list as the �rst item. The last operation put into the redo list can be redoneand again be appended to the history list. The undo and redo are meta operations in thelinear undo model and, unlike normally executed operations, do not appear in the historylist.Figure 1 shows an example of a history list and a redo list maintained by the linearundo model. In Figure 1, Ci represents one of executed operations and qi one of databasestates. When q4 is the current state, its left is the history list and its right the redo list.At q4, the �rst operation that can be undone is C4, the last operation of the history list,and the �rst operation that can be redone is C5, the �rst operation of the redo list.A shortcoming of the linear undo model is that users cannot recover a certain previousstate in some cases. If an operation O1 is undone and some other operations are newlyexecuted, it is impossible to recover the previous state in which O1 was done using onlyundo and redo operations in this model. For example, in Figure 1, one cannot recover stateq5 if new operation C8 were executed at q4. Because undoing C8 makes C8 to be the �rstoperation of the redo list, it is impossible to redo C5 without redoing C8 �rst.The history undo model keeps a time-ordered sequence of all the operations includingundo and redo on its history list. This model treats undo and redo as any other normallyexecuted operations. Undoing an operation appends its inverse operation to the historylist. There is an undo pointer that indicates an operation to be undone. While undo3

www.manaraa.com

 history list redo list

 current state

q0

C1 C2 C3 C4 C5 C6 C7

q1 q2 q3 q4 q5 q6 q7Figure 1: A history list and a redo list in the linear undo model.
�s �t �u �v(a)

(c)

(d)

�s �t �u �v �w�v’

(b) �s �t �u �v �v’

�s �t �u �v �w�v’ �v’’�w’

undo pointer

Figure 2: Undo steps of the history undo model.operations are in progress, the undo pointer indicates the previous operation of the mostrecently undone one in the history list; otherwise, it indicates the last operation of thehistory list. Redoing an operation is undoing its inverse operation.Figure 2 shows undo steps in the history undo model. C 0i represents the inverse of Ci,and C 00i the inverse of C 0i, i.e., the redo operation of Ci. Given the history list in Figure2(a), suppose that C4 is undone. Then, the resulting history list will be as in Figure 2(b),where C 04 is the inverse operation that cancels the e�ect of C4. The undo pointer indicatesC3, the previous operation of the most recently undone one, C4. If one breaks out of theundo mode by doing a new normal operation, say C5, the history list will become the onein Figure 2(c). At this point, doing two more undo operations will result in Figure 2(d),where the �rst one is an undo operation of C5 and the second one a redo operation of C4.The history undo model has the nice property that it is possible to go back to anyprevious state. Because its history list keeps all the ever executed operations, users canrecover any previous state by undoing all the operations executed since that state. However,the history undo su�ers from a quite long history list resulting from the repetitive undoand redo operations. When an operation has been undone and then redone, one has toundo the redone operation and redo the undone operation to restore any previous state of4

www.manaraa.com

these. This repetition makes users confused and the system spend more time to recoverthe previous state. We call this problem the repetition problem of the history undo model.In the script model, user operations are maintained in a script �le. The system executesthe script �le and then shows its result to users. This model supports the undo operationby allowing users to edit the script �le. To undo the executed operations, one deletes themfrom the script �le and reruns it from the initial state.The script model is simple and powerful. However, it is not appropriate for a user-interactive interface for the following two reasons. First, its usage is inconvenient andcomplex because the user has to manage the process of editing and running the script �le.Second, it spends considerable execution time rerunning all the operations in the script �lefor every interaction without a partial execution mechanism[15].3 User-Interactive Undo in the DBMSResearch on user-interactive undo so far has focused only on the models[14][2][15]; therehas been no research on integrating the interactive undo with a transaction processingsystem such as a DBMS. In this section, we present issues in supporting user-interactiveundo in a DBMS.First, we should select the user-interactive undo model for the DBMS operations. Here,we do not design a new one, since there are many basic studies on the user-interactiveundo models as described in Section 2. Instead, we choose the history undo model for thefollowing reasons: �rst, it has an advantage that a user can go back to any previous state;second, its history list has a structure very similar to the log used in a recovery method.We can utilize the log as the history list without creating a new data structure, and thismakes it easy to integrate the user-interactive undo with a DBMS.Second, we should solve the repetition problem of the history undo model. As describedin Section 2, repetition of undo and redo operations makes the history list quite long.Whenever a transaction containing the undo and redo rolls back or a user returns to adesired previous state, the longer history list makes the execution take much more time.The transaction rollback time a�ects not only total throughput of the system but alsousers' waiting time. In this paper, we present two solutions to the repetition problem inthe history undo model: the �rst is an algorithm guaranteeing fast transaction rollback inspite of repeated undos and redos, and the second a bulk undo operation by which a usercan restore the database to a predetermined state with just one interaction. We describethese features in detail in Section 4.2.2.Third, we should consider how to implement the history list. As mentioned before, weutilize the log used in the traditional database recovery method as a base structure forthe history list without creating a new one. Since the history list keeps user operations(or user commands) while the log keeps internal DBMS operations, there is a one-to-manymapping between the two types of operations. User operations are DBMS calls by whichusers access the DBMS, and the internal DBMS operations are low-level ones performedin a DBMS and invoked by each DBMS call.In order to specify the mapping between these two kinds of operations, we employboundary log records. We can easily identify all the log records written for one user operationby enclosing them using two boundary log records. Therefore, the undo of a user operation5

www.manaraa.com

makes the log records between the boundary log records rolled back atomically. To avoidconfusion and for easy presentation, we assume that one user operation corresponds to onelog record.Fourth, we should consider whether the undo of an operation has to release the locksacquired during its execution. Let Sb be a transaction state before the operation O isexecuted, and Su be another transaction state after the operation O has been executedand subsequently undone. Assume that during the execution of the operation O, a lockL was acquired to update an object o. To make Su be the same state as Sb, L should bereleased after the undo operation. However, if L is released, redoing O becomes impossibleif another transaction has acquired L and updated o. Therefore, the acquired lock shouldbe kept after the undo operation. Thus, our undo operation restores only the data valueswithout releasing the acquired lock, and this also concurs with the traditional two-phaselocking(2-PL) protocol[3].Finally, we should provide user-interactive undo without serious changes to the tradi-tional recovery methods, which require severe overhead in their designs and implementa-tions. Since the proposed method utilizes the recovery data used in the traditional recoveryfacilities, its implementation does not require severe changes in the traditional ones. Inthis paper, we describe the method as an extension of ARIES[11], a well-known recoverymethod.4 A Recovery Method Supporting User-Interactive Undo ina DBMSIn this section, we present a new recovery method supporting user-interactive undo in aDBMS. The proposed method extends ARIES[11], which is widely known to be a correctand reliable recovery method. In Section 4.1, we present an overview of ARIES and describethe partial rollback facility that supports only undo operations. In Section 4.2, we describethe data structures and algorithms of our method in detail. In Section 4.3, we analyze theperformance of the proposed method.4.1 ARIES Recovery MethodOverview of ARIES To achieve consistency of a transaction, ARIES records the progressof a transaction and its update actions in a log. The log consists of log records. Each logrecord is assigned a unique log sequence number(LSN) | the address of the correspondinglog record. Every data page has an LSN �eld, called PageLSN, for keeping the LSN of thelast update operation on itself.ARIES records not only the updates performed during forward processing of trans-actions using normal log records but also the updates performed during partial or totalrollback of transactions using compensation log records(CLRs)[11]. The normal log recordscontain both undo and redo data. The undo data provide information on how to undo thechanges made by the transaction, and the redo data on how to redo them. Therefore, theoperation logged using the normal log record can be either undone or redone. To maketransaction rollback e�cient, all the log records written by the transaction are linked viathe PreviousLSN �eld of the log records in reverse chronological order. The PreviousLSN6

www.manaraa.com

Type

PreviousLSN

UndoNextLSN

RedoDataFigure 3: The data structure of a CLR.�eld contains the LSN of the preceding log record written by the same transaction.In ARIES, the update written by a CLR is never undone, and hence, a CLR containsonly redo data. Figure 3 shows the data structure of a CLR. The UndoNextLSN �eldcontains the LSN of the next log record to be undone during rollback of a transaction;this is the value of the PreviousLSN �eld of the log record that has just been undone.The RedoData �eld contains redo information for the CLR, i.e., undo information, forthe corresponding update operation. The Type �eld indicates whether this log record isa CLR or not. When a CLR appears during transaction rollback or restart recovery, itsUndoNextLSN �eld is used to determine the next log record to be undone.In ARIES, restart recovery consists of the analysis pass, redo pass (or more speci�cally,repeating history), and undo pass. The analysis pass determines the starting point ofthe redo pass and �nds loser transactions by scanning log records from the last availablecheckpoint log record[7] up to the end of the log. The loser transactions are those that werein progress when the crash occurred and will be rolled back in the undo pass. During theredo pass, ARIES repeats the operations in its log whose e�ects were not reected on thedatabase disk before failure of the system. If the LSN of a log record is greater than thePageLSN of the corresponding data page, i.e., if the e�ect of the log record is not reectedon that page, the log record's update should be redone. Otherwise, i.e., if the log record'supdate is already reected in that page, the log record is skipped. The undo pass rolls backall the loser transactions. During this pass, undo actions for the log records belonging tothe loser transactions are done in the reverse chronological order, and CLRs for the undoactions recorded in the log.ARIES supports both page-oriented undo and logical undo for transaction rollback[11][12]. Page-oriented undo occurs when a page containing data updated during forwardprocessing still contains the data that is about to be undone. Logical undo occurs whenthe page containing the data to be undone is di�erent from the one originally modi�edduring forward processing. This situation can happen because, in a multi-user environment,uncommitted updates of one transaction can be moved to a di�erent page by another7

www.manaraa.com

transaction. For example, updated index entries are moved upon index node split. Ifthe former transaction rolls back, logical undo occurs since the original page does notcontain the data anymore. Logical undo has an overhead of accessing meta data such asindexes or system catalogs to search the page that contains the moved data. If the systemwere restricted to do only page-oriented undo, the latter transaction would have to waitfor the former to commit. This waiting of the transactions that update the same pagedegrades concurrency levels of the system. Therefore, ARIES supports logical undo forhigh concurrency.Unlike undo, ARIES supports only page-oriented redo because it can handle all thecases of the redo pass[11][12]. Page-oriented redo occurs when a page containing data,updated during forward processing, still contains the data which is to be redone during theredo pass. In contrast, logical redo occurs when the page containing the data to be redoneis di�erent from the one originally modi�ed during forward processing. Performing onlypage-oriented redo makes the redo pass e�cient since it accesses only the pages originallyupdated during the forward processing without accessing any meta data.Partial rollback The partial rollback[6][11][5] is a facility that can rollback part of atransaction. Unless a DBMS provides this facility, a transaction must be rolled back in itsentirety even when errors occur in its small portion. These errors are caused by deadlocks,requests for nonexistent data, or unauthorized data accesses, etc. Also, sometimes, usersmay want a transaction to roll back when they are not satis�ed with the result of operations.Savepoints[5] must be established before a partial rollback; these are landmarks indi-cating the points to which a transaction can rollback. When a savepoint is established, theLSN of the latest log record written by the transaction, called SaveLSN, and the currentstate of the transaction are stored in virtual storage; then, the identi�er of the savepointis returned to the user. The current state of the transaction in progress includes locks,cursors, and accessing information for volumes and �les[11].During partial rollback to a savepoint, log records are undone in the reverse chrono-logical order and the state saved for that savepoint is restored. For each undo action, aCLR is recorded. As described in the previous section, ARIES never undoes CLRs duringa rollback using the chain of the CLRs via the UndoNextLSN �eld. When a transaction ispartially rolled back to a savepoint, the locks and other data structures obtained after thatsavepoint are released. Thus, the aborted portion of the transaction is invisible to usersafter the partial rollback.A particular savepoint is no longer outstanding if another partial rollback has beenperformed to a preceding one. Figure 4 shows a number of savepoints established for atransaction. When C5 was executed, the outstanding savepoints are S0, S1, S2, and S3.After a partial rollback to S2, S1 is outstanding but S3 is not, and the aborted part of thetransaction containing C3, C4, and C5 is regarded as never have been executed.Directly applying the partial rollback scheme to user-interactive undo has the followingproblems. First, although the partial rollback prevents the total rollback, it does notsupport redo operation for the aborted part of the transaction. That is, user interactionis very restrictive since the partial rollback provides only undo operations, but not redooperations. Second, users must always be aware of the savepoints for undo. They have toestablish savepoints before a partial rollback or identify the savepoints established by the8

www.manaraa.com

CC1 C2 C3 C4 C5

S0 S2 S3S1

T

Figure 4: Savepoints in a transaction.system, and be aware of the outstanding savepoints when they need a partial rollback.4.2 A new recovery method supporting user-interactive undoIn this section we describe a new recovery method supporting user-interactive undo. InSection 4.2.1, we identify the characteristics of log records for undo and redo operationsand propose new log record types that satisfy these characteristics. In Section 4.2.2, wedescribe recovery algorithms that support undo and redo operations. We describe ourmethod as an extension of ARIES described in Section 4.1.4.2.1 New log record types for undo/redoTo implement the history list we should devise a new type of log record for logging undoand redo operations in the history undo model. Such log records must have the follow-ing characteristics: �rst, although they have to contain the undo and redo informationfor a transaction rollback and crash recovery, they should avoid duplicates of the sameinformation. If a system supports only page-oriented undo, the undo information of undooperations is the same as the redo information of redo operations, and vice versa. Therefore,in this case, keeping both undo and redo information is duplicating the same information,which causes severe space overhead considering that undo and redo operations are fre-quently executed in authoring processes. Second, they have to contain status informationto identify whether the logged operations remain in e�ect in the database. By skipping theoperations that are already undone, we can minimize the processing overhead of rollbackcaused by the problem in the history undo model described in Section 3.The existing log record types used in ARIES are not applicable to user-interactive undosince they do not have the above characteristics. The CLRs of ARIES are not appropriatefor logging undo and redo operations because of the absence of undo information. Sincenormal log records contain both undo and redo information for logged operations, thesecan be used for logging undo and redo operations. However, these require large log spaceoverhead due to the replicated information and also su�er from the repetition problemof the history undo model. Figure 5 shows the processing overhead at the time of atransaction rollback. The following notations are used here: a white circle represents anormal log record, and a shaded circle a CLR; a double-lined arrow from a log recordindicates PrevousLSN | its previous log record belonging to the same transaction |and a dotted arrow the UndoNextLSN of the CLR; characters written in a circle identifythe executed update operation; an odd number of quotation marks beside the charactersrepresent an undo operation, and an even number of quotes a redo operation. In Figure 5,9

www.manaraa.com

transaction rollback request

r9

O2 O3 O3’ O2’ O2’’ O3’’ O3’
r2 r3 r4 r5 r6 r7 r8

O2’

Figure 5: A transaction rollback using the normal log record type.the operations O2 and O3 were already undone when the rollback of the transaction isrequested. However, the rollback process redoes the operations O2 and O3 and logs theseactions in r6 and r7. And then, it undoes the same operations and logs these actions inr8 and r9. Therefore, it unnecessarily performs redoing and undoing of O2 and O3. Thatis, when using normal log records, there is overhead that all the repetitive undo and redooperations in forward processing are to be undone in the reverse order during a transactionrollback. This is because the rollback process does not distinguish the operations alreadyundone.We de�ne a new type of log record, called a partial log record(PLR), for e�cient supportof user-interactive undo. The PLR does not keep their own undo and redo information,but keeps a pointer to reference another log record that contains this information. We callthe referenced one an original log record since it is a normal log record that correspondsto the original update operation. In the proposed method, the PLR contains only theminimal information to undo and redo; when more information is needed it is read fromthe corresponding original log record. Therefore, PLRs minimize the log space overhead forundo and redo operations. In addition, a new transaction rollback algorithm using PLRsminimizes the transaction rollback overhead.In a multi-user environment, it is essential to support logical undo for achieving highconcurrency as described in Section 4.1. The PLR incurrs two problems in supportinglogical undo. First, undos and redos after a logical undo should always perform logicalundo in order to �nd the page that holds the moved data since the recorded PLR for the�rst logical undo has no undo and redo information. This is very ine�cient since logicalundo requires additiontional accesses to the meta data. Second, during the redo pass ofcrash recovery, logical redo should be performed for the PLR that was recorded for alogical undo during forward processing since the PLR has no redo information. Supportinglogical redo is undesirable since it requires signi�cant changes to ARIES that supports onlypage-oriented redo.To solve these problems we de�ne another new type of log record, called a substitute logrecord(SLR), that contains its own undo and redo information for a logical undo. When alogical undo occurs, an SLR is logged instead of a PLR, and its undo and redo informationsubstitutes that of the original log record. Once an SLR is recorded, the following PLRsfor undos and redos of the same operation reference this SLR, not the correspondingoriginal log record. When these following PLRs are to be undone, page-oriented undos are10

www.manaraa.com

Type

PreviousLSN

UndoNextLSN

OriginalLSN(a) The structure of a PLR.
Type

PreviousLSN

UndoNextLSN

UndoRedoData(b) The structure of an SLR.Figure 6: The structures of new log records.performed using the undo and redo information of the SLR. Therefore, SLRs minimize thenumber of logical undos while they avoid duplicating the same undo and redo information.Also, it is always possible to perform page-oriented redo for PLRs using the redo and undoinformation of the corresponding original log record or SLR during the redo pass of crashrecovery. Therefore, SLRs solve both of the problems mentioned above.Figure 6(a) shows the structure of a PLR. The OriginalLSN �eld contains the LSN ofthe corresponding original log record or SLR. The UndoNextLSN �eld contains the LSNof the next log record to be processed during transaction rollback or bulk undo. The Type�eld indicates both whether this is a PLR or not and whether the recorded operation isan undo or a redo operation. The PreviousLSN �eld contains the LSN of the previous logrecord belonging to the same transaction. Figure 6(b) shows the structure of an SLR. AnSLR contains an UndoRedoData �eld instead of an OriginalLSN �eld. The UndoRedoData�eld contains the undo and redo information for a logical undo. The Type �eld indicatesboth whether this is an SLR or not and whether the recorded operation is an undo or aredo operation. The PreviousLSN �eld and UndoNextLSN �eld are the same as those of aPLR. The next section presents recovery algorithms using PLRs and SLRs.4.2.2 Recovery AlgorithmsIn this section, we present new recovery algorithms related to the user-interactive undofacility. First, we describe user-interactive undo in forward processing of a transaction andpresent an algorithm for rollback of transactions containing user-interactive undo. Next,we show that the crash recovery algorithm of ARIES can be used in our method withoutsigni�cant changes. Finally, we describe a bulk undo as a new operation for undoingwith one interaction a sequence of operations performed during forward processing of atransaction.User-interactive undo in forward processing of a transaction During forwardprocessing of a transaction, user-interactive undo is applied in the reverse order startingfrom the last executed operation. User-interactive undo in forward processing can beclassi�ed into three types of operations: undo of an original update operation, undo of11

www.manaraa.com

O1 O2 O3 O2’ O3’’
r1 r4 r5 r7r2

OriginalLSN

PreviousLSN

 UndoNextLSN

O3’
r3

O2’’
r6

O3’’’
r8

original log record

PLR SLR

r2

O2’’’
r9

r1

Figure 7: An example of user-interactive undo logged by PLRs and SLRs.an undone operation, and undo of a redone operation. The undo operation of an originalupdate operation undoes the corresponding original log record. This operation uses undoinformation of the original log record and logs a PLR with the following values. The Typeis undo PLR; the OriginalLSN is the LSN of the original log record that has just beenundone; the PreviousLSN is the LSN of the log record that has most recently been loggedby the same transaction; the UndoNextLSN is the PreviousLSN of the original log record.This value of UndoNextLSN indicates that the previous log record of the original log record,but not the previous log record of the PLR, is the next log record to be rolled back duringa transaction rollback. When a logical undo occurs, an SLR is recorded instead of a PLR.The SLR's Type is undo SLR, and its UndoRedoData is undo and redo information forthe logical undo. Its PreviousLSN and UndoNextLSN are the same as those of a PLR.Figure 7 shows an example of user-interactive undo logged by PLRs. White circles rep-resent normal log records, dot-�lled circles PLRs, and grid-patterned circles SLRs. Single-lined arrows indicate OriginalLSNs pointing to the corresponding original log records ofthe PLRs, and dotted arrows UndoNextLSNs pointing to the previous log records of theoriginal log records, and double-lined arrows PreviousLSNs. In Figure 7, there are twocontinuous undo operations logged by r4 and r5. The record r4 is an undo PLR thatrecords a page-oriented undo of r3; its original log record, next log record to be undone,and previous log record are r3, r2, and r3, respectively. The record r5 is an undo SLR thatrecords a logical undo of r2; its next log record to be undone and previous log record arer1 and r4, respectively.An undo operation of an undone operation is the same as a redo operation of theoriginal operation. The undo of a PLR logged for an undone operation is performed usingthe redo information in the original log record or the undo(or redo) information in theundo(or redo) SLR. This action is also logged by a PLR with the following values. TheType is redo PLR, the OriginalLSN and the UndoNextLSN are the same LSNs as thosein the PLR that has been undone. The undo of an SLR logged for an undone operationis performed using its own undo information. This action is logged by a PLR with thefollowing values. Its UndoNextLSN is the same as that of the SLR, and its OriginalLSNis the LSN of the SLR. When a logical undo occurs, an SLR is recorded instead of a PLR.12

www.manaraa.com

The SLR's Type is redo SLR and its UndoRedoData is undo and redo information for thelogical undo. Its PreviousLSN and UndoNextLSN are the same as those of the PLR. InFigure 7, there are two continuous redo operations logged by r6 and r7. The record r6 isa redo SLR that records the logical undo of undo SLR r5. Therefore, r6 points to r1 as itsnext log record to be undone. The record r7 is a redo PLR that logs undoing the undoneoperation logged by undo PLR r4. Therefore, r7 and r4 point to the same original logrecord, r3, and the next log record to be undone, r2.An undo operation of a redone operation is the same as an undo operation of theoriginal operation. Except that the type of operation is undo, this operation is processedin almost the same way as in the redo operation that has just been described. The undoof a PLR logged for a redone operation is performed using the undo information in theoriginal log record or the redo(or undo) information in the undo(or redo) SLR. This undoaction is logged by a PLR with the following values. The Type is undo, the OriginalLSNand the UndoNextLSN are the same LSNs as those in the PLR that has been redone. Theundo of an SLR logged for a redone operation is performed using its own undo information.This action is logged by a PLR with the following values. Its UndoNextLSN is the sameas that of the SLR, and its OriginalLSN is the LSN of the SLR. In Figure 7, there are twocontinuous undo operations logged by r8 and r9. The record r8 is an undo PLR that logsundoing the redone operation logged by undo PLR r7. Therefore, r8 and r7 point to thesame original log record, r3, and the next log record to be undone, r2. The record r9 is anundo PLR that records undoing the redone operation logged by redo SLR r6. Therefore,r9 points to r6 as its original log record, and r1 as its next log record to be undone.A transaction rollback algorithm The history undo model has the problem that thetransaction rollback takes much more time than is necessary in case the transaction containsrepetitive undone and redone operations. For resolving this problem, we propose a newtransaction rollback algorithm that avoids executing unnecessary operations by skippingthese repetitive undo and redo operations using the Type and UndoNextLSN �elds of PLRsand SLRs. The algorithm is as follows. Let Rcurrent be the last log record of a transactionto be rolled back.Algorithm Transaction Rollback:1. Read Rcurrent.2. If Rcurrent is a normal log record, do the corresponding undo action and write a CLRfor this action; set the UndoNextLSN of the CLR to the PreviousLSN of Rcurrent;set Rcurrent, a log record to be accessed next, to the PreviousLSN of Rcurrent.3. If Rcurrent is a CLR, set Rcurrent to the UndoNextLSN of Rcurrent.4. If Rcurrent is a PLR or an SLR, do the following actions:(a) if the Type of Rcurrent is undo, go to Step 4(c);(b) if the Type of Rcurrent is redo, do the following actions:i. if Rcurrent is a PLR, read Roriginal | the log record referenced by theOriginalLSN of Rcurrent; 13

www.manaraa.com

ii. do the corresponding undo action and write a CLR for this action; set theUndoNextLSN of the CLR to the UndoNextLSN of Rcurrent;(c) set Rcurrent to the UndoNextLSN of Rcurrent.5. go to Step 1.During transaction rollback, SLRs can be handled in almost the same way as PLRs. Itis because SLRs are recorded instead of PLRs when logical undos occur, and SLRs containthe same kind of information as PLRs except that SLRs contain undo information insteadof OriginalLSN. This algorithm handles SLRs in the same way as PLRs except that undoingSLRs skips Step 4(b)i| a step to access the original log records. For ease of explanation,we regard SLRs as PLRs hereafter.This algorithm has two skipping processes, which skip the log records already undonein transactions. First, in Step 4(a), when the Type of Rcurrent is undo, the algorithm skipsundoing it, since the original operation has already been undone before the rollback. Thisis similar to the idea used in ARIES that never undoes CLRs. Second, in Step 4(c), it skipsall the log records between the PLR and the corresponding original log record of the PLRsince the next log record to be undone is the UndoNextLSN instead of the PreviousLSNof Rcurrent. That is, if there are n undo operations before a transaction rollback request,the LSN of the next log record to be accessed after undoing the log record for the n-thundo is the PreviousLSN of the corresponding original log record, not the PreviousLSN ofthe current log record. This means it skips at least (n { 1) PLRs between the PLR andthe original log record. Though, unlike in ARIES, this skipping area includes both undoand redo PLRs, we can still use the UndoNextLSN concept since we follow the historyundo model. In this model, if the n-th undo operation is redo, the state reached by thisoperation is the same as the one reached by the original operation. Therefore, undoing then-th operation means undoing the original operation. These skipping processes, which skipthe repetitive undo and redo operations, reduce the number of log records to be processed,and therefore, enable faster rollback of transactions.Figure 8 shows an example of a transaction rolled back by the proposed algorithm. Atthe requesting point of the transaction rollback, the operation O2 was undone at r5 andredone at r6, and the operation O3 was undone at r4. The rollback process has undoneonly two operations instead of six; it has undone the operation O2 that was redone at r6and the operation O1 at r1, but has skipped the log records r5, r4, r3, and r2. In this waythe proposed algorithm skips undoing repetitive undo and redo operations and undoes onlythe operations still reected in the dat abase.Crash recovery algorithms We utilize crash recovery algorithms of ARIES, whichconsist of the analysis pass, redo pass and undo pass. User-interactive undo has no e�ecton the analysis pass of determining the starting point of the redo pass and loser transactions.During the redo pass of repeating history, we have to perform additional operations thatread the redo information from the original log records when redoing PLRs. During theundo pass, we use the same transaction rollback algorithm as mentioned above.Bulk undo A bulk undo is de�ned as a new operation that undoes a sequence of useroperations with just one interaction. The bulk-undone operations can be undone like an un-14

www.manaraa.com

transaction rollback request

O1
r1

O2
r2

O3
r3

O3’
r4

O2’
r5

O2’’
r6

O2’’’
r7

O1’
r8

original log record

PLR CLRFigure 8: An example of a transaction rollback.done operation. Before requesting bulk undo operations, undopoints should be establishedduring forward processing of a transaction to mark the states to be restored. When a userrequests establishing an undopoint at any state, the LSN of the latest log record written bythe transaction, called UndopointLSN, is stored in virtual storage and the correspondingundopoint identi�er is returned. A bulk undo to an undopoint undoes all the log recordsfrom the last to the undopoint and writes PLRs for these actions. The PLRs logged bya bulk undo keep additional information of the undopoint identi�er to di�erentiate themfrom other PLRs for ordinary undo operations.The bulk undo to an undopoint resembles partial rollback to a savepoint, but di�ersin that it allows undoing bulk-undone operations. This is possible since we do not releasethe locks acquired after the undopoint and log the bulk undo operation using the undoablePLRs.During the bulk undo, like in a transaction rollback algorithm, there are skippingprocesses, which skip the log records already undone as well as repetitive undo and redooperations. After a sequence of operations is bulk-undone, these operations can be redoneby one undo operation. This example is shown in Figure 9. Dark circles represent PLRswritten for the operations that were undone or redone by bulk undo operations. Undopoint1was established after executing the operation O1. At t1, a bulk undo to Undopoint1 wasrequested. This operation undid two operations, O4 and O3, but skipped r3 and r2 writtenfor the operation O2 since it had already been undone. At t2, after executing the operationO5, two undo operations were requested. The �rst one undid log record r8 and wrote thisaction at r9; the second one undid a bulk undone operation from r7 to r6 and wrote theseactions at r10 and r11.Figure 10 shows another example of bulk undo operations with two undopoints. Undopoint1was established after executing the operation O1 and Undopoint2 after O3. At t1, a bulkundo to Undopoint1 was requested. This operation undid two operations, O4 and O3, butskipped r3 and r2 written for the operation O2 since it had already been undone. At t2,after executing the operation O5, a bulk undo to Undopoint2 was requested. This opera-tion undid log records from r8 to r5: it undid operation O5, redid operation O3, and wrotethese actions at r9 and r10, but skipped r6 and r5 written for the operation O4 since it15

www.manaraa.com

U ndopoint1

t 2

O1 O2 O2
’ O3 O4 O4’ O3’ O5 O5’ O3’’

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11

O4’’

t 1Figure 9: An example of a bulk undo operation and its redo.
Undopoint1

t 2

O1 O2 O2
’ O3 O4 O4’ O3’ O5 O5’ O3’’

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

t 1

Undopoint2Figure 10: An example of bulk undo operations with two undopoints.had been executed and undone after Undopoint2. In ARIES, this scenario is not possiblesince after the �rst partial rollback to Undopoint1, Undopoint2 is no more outstanding asdescribed in Section 4.1.The bulk undo is useful for both the users and the system. It is convenient for theusers since they can undo a sequence of operations with just one simple interaction. Fromthe system's viewpoint, the bulk undo is e�cient since it reduces interactions between theuser and the system; it also reduces the number of log records to be processed during bulkundo by skipping repetitive undo and redo operations.4.3 Performance AnalysisAs described in the previous section, the proposed method can be implemented by extend-ing ARIES. This section analyzes the overhead of extending to support user-interactiveundo by comparing our method with ARIES. This comparison is restricted to undo opera-tions since redo operations are not provided by the partial rollback facility in ARIES andcannot be compared. We also restricted this comparison to page-oriented undo only sincethe probability that logical undo occurs due to uncommitted updates of one transactionbeing moved to a di�erent page by another transaction is relatively low. We treat a partial16

www.manaraa.com

rollback as a bulk undo operation in the proposed method.Generally, it is very complex to analyze the performance of recovery method since onehas to take into account a number of aspects. The most important measures as describedby Reuter[13] are as follows: 1) overhead during normal database processing; 2) recoveryspeed after a failure; 3) space requirement of the log �le. The overhead during normaldatabase processing and speed of crash recovery can be analyzed by the log access time,data access time, and execution time. If the same transaction were executed, our methodand ARIES would require the same data access time and execution time, but di�erent logaccess time since they use di�erent log record types for undo operations. The log accesstime is proportional to the number of log records to be read, the number of log recordsto be written, and the size of a log record. We use these factors to analyze the overheadduring normal database processing and recovery speed after a failure.During normal database processing, transactions may be in forward or rollback process-ing. In forward processing, although the proposed method writes PLRs for undo operationswhile ARIES writes CLRs, the numbers of log records read and written by the two meth-ods are identical. In rollback processing, the two methods access the same number of logrecords since both of them skip the log records already undone, undo other log records,and log these undo actions. Therefore, during normal database processing, the proposedmethod accesses the same number of log records as ARIES.Restart recovery consists of the analysis pass, redo pass, and undo pass. During theanalysis pass, two methods read the same number of log records since they have recordedthe same number of log records during the normal database processing. However, duringthe redo pass, the proposed method has to read the original log records of PLRs to get theredo information in case their updates have not yet been reected on the database. Thisis because PLRs do not keep the redo information to avoid the replication of the sameinformation. In the worst case, the overhead is signi�cant since reading the original logrecord requires reading another log page; however, this overhead may be reduced when theoriginal log record is stored in the same log page containing the PLR and when the originallog records for a sequence of PLRs are stored in the same log page. During the undo pass,the number of log records to be read and written are identical in the two methods sincethe undo pass is similar to transaction rollback.The size of a PLR is quite smaller than that of a CLR. This is because a CLR keepsthe redo information while a PLR only keeps the LSN of the corresponding original logrecord. Redo information in a CLR is quite larger in size than an LSN and can be verylarge in some cases depending on the types of operations that have been logged.Compared with ARIES, the proposed method performs the normal database processingas fast or even slightly faster since it accesses the same number of log records whose sizesare smaller than CLRs of ARIES. Similarly, our method performs the analysis pass andundo pass during crash recovery as fast as or even faster than ARIES. During the redopass, however, if the database already reects the PLRs' updates, our method works fasterthan ARIES; otherwise, it has additional overhead of reading the corresponding originallog records. The overall performance of crash recovery is comparable to that of ARIES inspite of the additional overhead in the redo pass since it is as fast as or even faster in theanalysis and undo passes.The space requirement of the log �le can be expressed by the number of log records17

www.manaraa.com

written times the size of a log record. Since both methods have the same number of logrecords to be written and the size of a PLR is shorter than a CLR, the space requirementof the log �le in our method is slightly smaller than in ARIES.In summary, the proposed method provides performance comparable to that of ARIESin normal database processing, crash recovery, and space requirement. This result indi-cates that our method supports the user-interactive undo without performance degradationcompared with existing recovery facilities, especially those in ARIES.5 ConclusionsDuring authoring processes in new DBMS applications such as software development, hy-permedia authoring, and CAD, there are frequent interactions between users and the sys-tem. Therefore, the applications should support such facilities that make these interactionseasily. In particular, in authoring processes, users need user-interactive undo for correctingtheir trials and errors easily by undo and redo operations.Previous research on user-interactive undo has been restricted on its models and user-interactive undo has been provided by the application programs themselves. Since theimplementation of user-interactive undo is quite complex, it poses signi�cant burden toapplication programmers. Moreover, if an application employs a DBMS, it has additionaloverhead for handling the data the DBMS itself updates.In this paper, we propose a new recovery method with which a DBMS can supportuser-interactive undo. The proposed method can be implemented by extending ARIES, awell-known recovery method. In particular, we support the user-interactive undo withoutaltering the basic idea of a crash recovery facility in ARIES. We adopt the history undomodel as our undo model because it has a nice property of being able to roll back to anyprevious state. We have proposed the notion of the PLR and SLR that allows redo ofundone operat ions and resolves the repetition problem of the history undo model. Theprimary role of the SLR is to avoid logical redo and, at the same time, to r educe thenumber of logical undos.The proposed method provides both user-controlled undo and redo operations in aDBMS while the partial rollback facility in ARIES provides only undo operations. Inaddition, its performance is comparable to that of ARIES. In this paper, we present twosolutions to the problem in the history undo model: the �rst is an algorithm that guaranteesfast rollback of a transaction in spite of repetitive undo and redo operations; the second isa bulk undo operation by which a user can restore the database to a predetermined statewith one interaction. Providing user-interactive undo in the DBMS is a new concept, andwe expect that our new DBMS facilities relieve application programmers of the overheadof implementing user-interactive undo themselves in DBMS applications.References[1] Archer, J.E., Conway, R., and Schneider, F.B., \User Recovery and Reversal inInteractive Systems," ACM Trans. on Program. Lang. Sys., Vol. 6, No. 1, pp. 1{19,Jan. 1984. 18

www.manaraa.com

[2] Berlage, T., \A Selective Undo Mechanism for Graphical User Interface Based onCommand Objects," ACM Trans. on Computer-Human Interaction, Vol. 1, No. 3,pp. 269{294, Sept. 1994.[3] Bernstein, P.A., Hadzilacos, V., and Goodman, N., Concurrency Control and Recoveryin Database Systems, Addison-Wesley, 1987.[4] Ginige, A., Lowe, D.B., and Robertson, J., \Hypermedia Authoring," IEEE Multi-media, pp. 24{35, 1995.[5] Gray, J. et al., \The Recovery Manager of the System R Database Manager," ACMComputing Surveys, Vol. 13, No. 2, pp. 223{242, June 1981.[6] Gray, J. and Reuter, A., Transaction Processing: Concepts and Techniques, MorganKaufmann, 1993.[7] Haerder, T. and Reuter, A., \Principles of Transaction-Oriented Database Recovery,"ACM Computing Surveys, Vol. 15, No. 4, pp. 287{317, Dec. 1983.[8] Kim, W., Modern Database Systems, The ACM Press, 1st Edition, 1995.[9] Korth, H. and Speegle, G., \Long-Duration Transactions in Software Design Projects,"In Proc. of the Sixth Intl. Conf. on Data Engineering, IEEE, pp. 568{574, Feb. 1990.[10] Korth, H., Kim, W., and Bancilhon, F., \On Long-Duration CAD Transactions,"Information Sciences, Vol. 46, No. 1-2, pp. 73{108, 1988.[11] Mohan, C. et al., \ARIES: A Transaction Recovery Method Supporting Fine-Granularity Locking and Partial Rollback Using Write Ahead Logging," ACM Trans.on Database Systems, Vol. 17, No. 1, pp. 94{162, Mar. 1992.[12] Mohan, C. and Levine, F., \ARIES/IM: An E�ective and High Concurrency IndexManagement Method Using Write-Ahead Logging," In Proc. Intl. Conf. on Manage-ment of Data, pp. 371{380, ACM SIGMOD, 1992.[13] Reuter, A., \Performance Analysis of Recovery Techniques," ACM Trans. on DatabaseSystems, Vol. 9, No. 4, pp. 526{559, Dec. 1984.[14] Prakash, A. and Knister, M.J., \A Framework for Undoing Actions in CollaborativeSystems," ACM Trans. on Computer-Human Interaction, Vol. 1, No. 4, pp. 295{330,Dec. 1994.[15] Thimbleby, H., User Interface Design, Addison-Wesley, 1990.[16] Wright, P., \Designing the Human-Computer Interface to Hypermedia Applications,"In Book Designing Hypermedia for Learning, (Jonassen, D.H. and Mandl, H. eds.),Springer-Verlag, 1990.
19

