A Recovery Method Supporting User-Interactive
Undo in Database Management Systems

Won-Young Kim' Kyu-Young Whang?
Young-Koo Lee? Sang-Wook Kim*

CS/TR-98-119
January 15, 1998

KAIST
Department of Computer Science

This work was partially supported by the “Development of a General Purpose Multiuser
Object-Storage System with Efficient Support for Variable Length Attributes(2)” project
sponsored by Korea Telecom.

!'With the Computer Science Department and the Center for Artificial Intelligence Research,
Korea Advanced Institute of Science and Technology (KAIST), 373-1 Koo-Sung Dong, Yoo-Sung
Ku, Daejon, Korea; email: wykim@mozart.kaist.ac.kr; fax: +82-42-869-3510.

2With the Computer Science Department and the Center for Artificial Intelligence Re-
search (Professor/Director, Database and Multimedia Lab.), Korea Advanced Institute of Sci-
ence and Technology (KAIST), 373-1 Koo-Sung Dong, Yoo-Sung Ku, Daejon, Korea; email: ky-
whang@mozart.kaist.ac.kr; fax: +82-42-869-3510.

3With the Computer Science Department and the Center for Artificial Intelligence Research,
Korea Advanced Institute of Science and Technology (KAIST), 373-1 Koo-Sung Dong, Yoo-Sung
Ku, Daejon, Korea; email: yklee@mozart.kaist.ac.kr; fax: +82-42-869-3510.

*With the Information and Telecommunication Engineering Department, Kangwon National
UniversitymGhuncheomyplangwon-Do, Korea; email: wook@cc.kangwon.ac.kr; fax: +82-361-250-
6390.

www.manaraa.com

A Recovery Method Supporting User-Interactive Undo in
Database Management Systems

Won-Young Kim* Kyu-Young Whang! Young-Koo Lee?
Sang-Wook Kim®

Abstract

User-interactive undo is a kind of recovery facility that allows users to correct mis-
takes easily by canceling and reexecuting operations that have already been executed.
Supporting user-interactive undo is essential for authoring processes in new database
applications such as software engineering, hypermedia, and computer-aided design. A
partial rollback using savepoints supported by commercial database management sys-
tems(DBMSs), which allows only cancellation of executed operations, is a restricted
form of user-interactive undo. Although many applications use DBMSs, they have to
provide user-interactive undo by themselves due to lack of support from the DBMSs.
Since implementation of user-interactive undo is quite complex, it poses significant
burden to application programmers.

This paper proposes a new recovery method facilitating user-interactive undo in
DBMSs. Such a facility relieves the programmers of implementing user-interactive undo
themselves in developing DBMS applications. The method guarantees fast rollback of
transactions that contain user-interactive undos. It also provides users with the bulk
undo operation that restores the database to a predetermined point in the past. The
bulk undo operation resembles partial rollback, but differs in that it allows a redo that
cancels the bulk undo. Moreover, the performance of the method is comparable to that
of the traditional recovery method in spite of added functionalities.

This work was partially supported by the “Development of a General Purpose Multiuser Object-Storage
System with Efficient Support for Variable Length Attributes(2)” project sponsored by Korea Telecom.

*With the Computer Science Department and the Center for Artificial Intelligence Research, Korea
Advanced Institute of Science and Technology (KAIST), 373-1 Koo-Sung Dong, Yoo-Sung Ku, Daejon,
Korea; email: wykim@mozart.kaist.ac.kr; fax: +82-42-869-3510.

"With the Computer Science Department and the Center for Artificial Intelligence Research (Pro-
fessor/Director, Database and Multimedia Lab.), Korea Advanced Institute of Science and Technology
(KAIST), 373-1 Koo-Sung Dong, Yoo-Sung Ku, Daejon, Korea; email: kywhang@mozart.kaist.ac.kr; fax:
+82-42-869-3510.

With the Computer Science Department and the Center for Artificial Intelligence Research, Korea
Advanced Institute of Science and Technology (KAIST), 373-1 Koo-Sung Dong, Yoo-Sung Ku, Daejon,
Korea; email: yklee@mozart.kaist.ac.kr; fax: +82-42-869-3510.

§With the Information and Telecommunication Engineering Department, Kangwon National University,
Chuncheon, Kangwon-Do, Korea; email: wook@cc.kangwon.ac.kr; fax: +82-361-250-6390.

www.manaraa.com

1 Introduction

Software development[9], hypermedia authoring[4][16], and CAD[10] have recently become
new database applications as they need to handle increasingly large volumes of data. Trial-
and-errors frequently occur in the authoring process of these applications due to users’
mistakes or unexpected results of operations. Thus, these applications need a recovery
facility for canceling the operations already executed and even for reexecuting them.

In this paper we define user-interactive undo as a recovery facility[14][2][15][1] that
enables users to cancel or reexecute under users’ control the operations that have already
been executed. User-interactive undo consists of two operations: undo and redo. The undo
operation restores user’s data to the previous state by canceling an executed operation. We
call the canceled operations undone operations. While in a broad sense the redo operation
is an operation that reexecutes the previously executed operation, in this paper, we restrict
the redo operation to the one that reexecutes an undone operation.

Although many database management systems(DBMSs) already have a recovery facility
that can recover databases from various failures by treating the entire authoring process
as a transaction, they do not support user-interactive undo. A total transaction rollback
is inappropriate for handling users’ trial-and-errors since it forces other operations, which
bear no relation to the errors and may have executed for a long time, to roll back as well.
This necessitates a mechanism that cancels parts of the executed operations and reexecutes
the undone operations upon the user’s requests without a total transaction rollback. The
recovery methods[11][6][5] used in commercial DBMSs provide such partial rollback using
savepoints[11][5]. A savepoint can be established at any transaction execution point. After
executing for a while, users can request canceling all the updates performed after the
savepoint when they meet errors or unexpected results. After such a partial rollback,
the transaction can resume normal execution. However, this partial rollback facility has a
critical limitation that it cannot reexecute the undone operations, and thus, it is not usable
in user-interactive undo.

Currently, since DBMSs do not support user-interactive undo, the applications do it
themselves. It is complex and difficult to implement user-interactive undo since it should
handle a variety of operations that may be encountered in an application. Moreover, if
an application uses a DBMS, much more overhead is incurred for handling the data the
DBMS itself updates. Therefore, providing user-interactive undo in the application that
uses a conventional DBMS imposes severe overhead to the programmer. Since applications
requiring user-interactive undo have recently been increasing, a mechanism supporting
user-interactive undo directly in the DBMS would be essential.

Until now, the research on user-interactive undo has mainly focused on its models. The
models define the order and the execution mechanism of their undo and redo. Typical
examples of user-interactive undo models are the linear undo model[14][2], history undo
model[14], and script model[15][1]. However, there has never been an approach supporting
user-interactive undo directly in a transaction processing system such as a DBMS.

In this paper, we propose a new recovery method with which a DBMS can directly
support user-interactive undo. In particular, we provide this additional facility without
seriously altering the existing one such as crash recovery used in commercial DBMSs. We
choose the history undo model[14][2] as our undo model since it has a nice property that

www.manaraa.com

it can rollback to any previous state.

The proposed method has the following characteristics: 1) it provides both (repeated)
undo and redo for executed operations in a DBMS while the partial rollback facility provides
only undo operations; 2) it requires little overhead, which enables the performance of our
method to be comparable to that of the traditional recovery method that only supports
partial rollback; 3) it fully utilizes the base structure for supporting crash recovery, which
makes it easy to implement the user-interactive undo in the DBMS; 4) it can reduce the
implementation overhead of application programmers because user-interactive undo could
be built easily using this facility provided in the DBMS.

The paper is organized as follows. In Section 2 we survey three basic user-interactive
undo models. In Section 3 we discuss issues in supporting user-interactive undo in a DBMS.
In Section 4 we present a new recovery method for supporting user-interactive undo and
analyze its performance overhead. In Section 5 we summarize and conclude the paper.

2 User-Interactive Undo Models

User-interactive undo models define the order and the execution mechanism of their undo
and redo operations, which are tightly related to their data structures. This section briefly
reviews three typical user-interface undo models: the linear undo model[14][2], history undo
model[14], and script model[15][1]. We present the data structures, mechanisms, benefits,
and shortcomings of each model.

The linear undo model maintains two lists: a history list and a redo list. The history
list keeps a sequence of the executed operations that remain in effect, i.e., that either have
been executed and not yet undone or have been redone. The redo list keeps a sequence of
operations that have been undone. The undo operation starts with the last operation in
the history list. When an operation is undone, it is removed from the history list and put
into the redo list as the first item. The last operation put into the redo list can be redone
and again be appended to the history list. The undo and redo are meta operations in the
linear undo model and, unlike normally executed operations, do not appear in the history
list.

Figure 1 shows an example of a history list and a redo list maintained by the linear
undo model. In Figure 1, C; represents one of executed operations and ¢; one of database
states. When ¢4 is the current state, its left is the history list and its right the redo list.
At qq4, the first operation that can be undone is Cy, the last operation of the history list,
and the first operation that can be redone is Cjs, the first operation of the redo list.

A shortcoming of the linear undo model is that users cannot recover a certain previous
state in some cases. If an operation (O; is undone and some other operations are newly
executed, it is impossible to recover the previous state in which O; was done using only
undo and redo operations in this model. For example, in Figure 1, one cannot recover state
g5 if new operation Cg were executed at ¢4. Because undoing Cs makes Cy to be the first
operation of the redo list, it is impossible to redo C5 without redoing Cg first.

The history undo model keeps a time-ordered sequence of all the operations including
undo and redo on its history list. This model treats undo and redo as any other normally
executed operations. Undoing an operation appends its inverse operation to the history
list. There is an undo pointer that indicates an operation to be undone. While undo

www.manaraa.com

current state

history list redo list —>|

Q4

Figure 1: A history list and a redo list in the linear undo model.

\¢

(@ e @ @ @ y undo pointer
%

OO0 0

@ He)~ -

@ He)~e)—~(w @ OaOmOa®

Figure 2: Undo steps of the history undo model.

»

©
9

(_

operations are in progress, the undo pointer indicates the previous operation of the most
recently undone one in the history list; otherwise, it indicates the last operation of the
history list. Redoing an operation is undoing its inverse operation.

Figure 2 shows undo steps in the history undo model. C] represents the inverse of Cj,
and C! the inverse of C/, i.e., the redo operation of C;. Given the history list in Figure
2(a), suppose that Cj is undone. Then, the resulting history list will be as in Figure 2(b),
where C} is the inverse operation that cancels the effect of Cy. The undo pointer indicates
Cs, the previous operation of the most recently undone one, Cy4. If one breaks out of the
undo mode by doing a new normal operation, say C5, the history list will become the one
in Figure 2(c). At this point, doing two more undo operations will result in Figure 2(d),
where the first one is an undo operation of C5 and the second one a redo operation of Cy.

The history undo model has the nice property that it is possible to go back to any
previous state. Because its history list keeps all the ever executed operations, users can
recover any previous state by undoing all the operations executed since that state. However,
the history undo suffers from a quite long history list resulting from the repetitive undo
and redo operations. When an operation has been undone and then redone, one has to
undo the redone operation and redo the undone operation to restore any previous state of

these. This repetition makes users confused and the system spend more time to recover
the previous state. We call this problem the repetition problem of the history undo model.

In the script model, user operations are maintained in a script file. The system executes
the script file and then shows its result to users. This model supports the undo operation
by allowing users to edit the script file. To undo the executed operations, one deletes them
from the script file and reruns it from the initial state.

The script model is simple and powerful. However, it is not appropriate for a user-
interactive interface for the following two reasons. First, its usage is inconvenient and
complex because the user has to manage the process of editing and running the script file.
Second, it spends considerable execution time rerunning all the operations in the script file
for every interaction without a partial execution mechanism([15].

3 User-Interactive Undo in the DBMS

Research on user-interactive undo so far has focused only on the models[14][2][15]; there
has been no research on integrating the interactive undo with a transaction processing
system such as a DBMS. In this section, we present issues in supporting user-interactive
undo in a DBMS.

First, we should select the user-interactive undo model for the DBMS operations. Here,
we do not design a new one, since there are many basic studies on the user-interactive
undo models as described in Section 2. Instead, we choose the history undo model for the
following reasons: first, it has an advantage that a user can go back to any previous state;
second, its history list has a structure very similar to the log used in a recovery method.
We can utilize the log as the history list without creating a new data structure, and this
makes it easy to integrate the user-interactive undo with a DBMS.

Second, we should solve the repetition problem of the history undo model. As described
in Section 2, repetition of undo and redo operations makes the history list quite long.
Whenever a transaction containing the undo and redo rolls back or a user returns to a
desired previous state, the longer history list makes the execution take much more time.
The transaction rollback time affects not only total throughput of the system but also
users’ waiting time. In this paper, we present two solutions to the repetition problem in
the history undo model: the first is an algorithm guaranteeing fast transaction rollback in
spite of repeated undos and redos, and the second a bulk undo operation by which a user
can restore the database to a predetermined state with just one interaction. We describe
these features in detail in Section 4.2.2.

Third, we should consider how to implement the history list. As mentioned before, we
utilize the log used in the traditional database recovery method as a base structure for
the history list without creating a new one. Since the history list keeps user operations
(or user commands) while the log keeps internal DBMS operations, there is a one-to-many
mapping between the two types of operations. User operations are DBMS calls by which
users access the DBMS, and the internal DBMS operations are low-level ones performed
in a DBMS and invoked by each DBMS call.

In order to specify the mapping between these two kinds of operations, we employ
boundary log records. We can easily identify all the log records written for one user operation
by enclosing them using two boundary log records. Therefore, the undo of a user operation

www.manaraa.com

makes the log records between the boundary log records rolled back atomically. To avoid
confusion and for easy presentation, we assume that one user operation corresponds to one
log record.

Fourth, we should consider whether the undo of an operation has to release the locks
acquired during its execution. Let S, be a transaction state before the operation O is
executed, and S, be another transaction state after the operation O has been executed
and subsequently undone. Assume that during the execution of the operation O, a lock
L was acquired to update an object o. To make S, be the same state as Sp, L should be
released after the undo operation. However, if L is released, redoing O becomes impossible
if another transaction has acquired L and updated o. Therefore, the acquired lock should
be kept after the undo operation. Thus, our undo operation restores only the data values
without releasing the acquired lock, and this also concurs with the traditional two-phase
locking(2-PL) protocol[3].

Finally, we should provide user-interactive undo without serious changes to the tradi-
tional recovery methods, which require severe overhead in their designs and implementa-
tions. Since the proposed method utilizes the recovery data used in the traditional recovery
facilities, its implementation does not require severe changes in the traditional ones. In
this paper, we describe the method as an extension of ARIES[11], a well-known recovery
method.

4 A Recovery Method Supporting User-Interactive Undo in
a DBMS

In this section, we present a new recovery method supporting user-interactive undo in a
DBMS. The proposed method extends ARIES[11], which is widely known to be a correct
and reliable recovery method. In Section 4.1, we present an overview of ARIES and describe
the partial rollback facility that supports only undo operations. In Section 4.2, we describe
the data structures and algorithms of our method in detail. In Section 4.3, we analyze the
performance of the proposed method.

4.1 ARIES Recovery Method

Overview of ARIES To achieve consistency of a transaction, ARIES records the progress
of a transaction and its update actions in a log. The log consists of log records. Each log
record is assigned a unique log sequence number(LSN) — the address of the corresponding
log record. Every data page has an LSN field, called PageLSN, for keeping the LSN of the
last update operation on itself.

ARIES records not only the updates performed during forward processing of trans-
actions using normal log records but also the updates performed during partial or total
rollback of transactions using compensation log records(CLRs)[11]. The normal log records
contain both undo and redo data. The undo data provide information on how to undo the
changes made by the transaction, and the redo data on how to redo them. Therefore, the
operation logged using the normal log record can be either undone or redone. To make
transaction rollback efficient, all the log records written by the transaction are linked via
the PreviousLSN field of the log records in reverse chronological order. The PreviousL.SN

www.manaraa.com

Type
PreviousL SN

UndoNextLSN

RedoData

Figure 3: The data structure of a CLR.

field contains the LSN of the preceding log record written by the same transaction.

In ARIES, the update written by a CLR is never undone, and hence, a CLR contains
only redo data. Figure 3 shows the data structure of a CLR. The UndoNextLSN field
contains the LSN of the next log record to be undone during rollback of a transaction;
this is the value of the PreviousLLSN field of the log record that has just been undone.
The RedoData field contains redo information for the CLR, i.e., undo information, for
the corresponding update operation. The Type field indicates whether this log record is
a CLR or not. When a CLR appears during transaction rollback or restart recovery, its
UndoNextLSN field is used to determine the next log record to be undone.

In ARIES, restart recovery consists of the analysis pass, redo pass (or more specifically,
repeating history), and undo pass. The analysis pass determines the starting point of
the redo pass and finds loser transactions by scanning log records from the last available
checkpoint log record[7] up to the end of the log. The loser transactions are those that were
in progress when the crash occurred and will be rolled back in the undo pass. During the
redo pass, ARIES repeats the operations in its log whose effects were not reflected on the
database disk before failure of the system. If the LSN of a log record is greater than the
PagelLSN of the corresponding data page, i.e., if the effect of the log record is not reflected
on that page, the log record’s update should be redone. Otherwise, i.e., if the log record’s
update is already reflected in that page, the log record is skipped. The undo pass rolls back
all the loser transactions. During this pass, undo actions for the log records belonging to
the loser transactions are done in the reverse chronological order, and CLRs for the undo
actions recorded in the log.

ARIES supports both page-oriented undo and logical undo for transaction rollback
[11][12]. Page-oriented undo occurs when a page containing data updated during forward
processing still contains the data that is about to be undone. Logical undo occurs when
the page containing the data to be undone is different from the one originally modified
during forward processing. This situation can happen because, in a multi-user environment,
uncommitted updates of one transaction can be moved to a different page by another

www.manaraa.com

transaction. For example, updated index entries are moved upon index node split. If
the former transaction rolls back, logical undo occurs since the original page does not
contain the data anymore. Logical undo has an overhead of accessing meta data such as
indexes or system catalogs to search the page that contains the moved data. If the system
were restricted to do only page-oriented undo, the latter transaction would have to wait
for the former to commit. This waiting of the transactions that update the same page
degrades concurrency levels of the system. Therefore, ARIES supports logical undo for
high concurrency.

Unlike undo, ARIES supports only page-oriented redo because it can handle all the
cases of the redo pass[11][12]. Page-oriented redo occurs when a page containing data,
updated during forward processing, still contains the data which is to be redone during the
redo pass. In contrast, logical redo occurs when the page containing the data to be redone
is different from the one originally modified during forward processing. Performing only
page-oriented redo makes the redo pass efficient since it accesses only the pages originally
updated during the forward processing without accessing any meta data.

Partial rollback The partial rollback[6][11][5] is a facility that can rollback part of a
transaction. Unless a DBMS provides this facility, a transaction must be rolled back in its
entirety even when errors occur in its small portion. These errors are caused by deadlocks,
requests for nonexistent data, or unauthorized data accesses, etc. Also, sometimes, users
may want a transaction to roll back when they are not satisfied with the result of operations.

Savepoints[5] must be established before a partial rollback; these are landmarks indi-
cating the points to which a transaction can rollback. When a savepoint is established, the
LSN of the latest log record written by the transaction, called SaveLSN, and the current
state of the transaction are stored in virtual storage; then, the identifier of the savepoint
is returned to the user. The current state of the transaction in progress includes locks,
cursors, and accessing information for volumes and files[11].

During partial rollback to a savepoint, log records are undone in the reverse chrono-
logical order and the state saved for that savepoint is restored. For each undo action, a
CLR is recorded. As described in the previous section, ARIES never undoes CLRs during
a rollback using the chain of the CLRs via the UndoNextLSN field. When a transaction is
partially rolled back to a savepoint, the locks and other data structures obtained after that
savepoint are released. Thus, the aborted portion of the transaction is invisible to users
after the partial rollback.

A particular savepoint is no longer outstanding if another partial rollback has been
performed to a preceding one. Figure 4 shows a number of savepoints established for a
transaction. When Cj was executed, the outstanding savepoints are Sy, Sy, Sz, and Sj.
After a partial rollback to Sy, S is outstanding but S5 is not, and the aborted part of the
transaction containing C3, Cy, and Cj is regarded as never have been executed.

Directly applying the partial rollback scheme to user-interactive undo has the following
problems. First, although the partial rollback prevents the total rollback, it does not
support redo operation for the aborted part of the transaction. That is, user interaction
is very restrictive since the partial rollback provides only undo operations, but not redo
operations. Second, users must always be aware of the savepoints for undo. They have to
establish savepoints before a partial rollback or identify the savepoints established by the

www.manaraa.com

)
HeHH (o)
s 7 s s s

Figure 4: Savepoints in a transaction.

system, and be aware of the outstanding savepoints when they need a partial rollback.

4.2 A new recovery method supporting user-interactive undo

In this section we describe a new recovery method supporting user-interactive undo. In
Section 4.2.1, we identify the characteristics of log records for undo and redo operations
and propose new log record types that satisfy these characteristics. In Section 4.2.2, we
describe recovery algorithms that support undo and redo operations. We describe our
method as an extension of ARIES described in Section 4.1.

4.2.1 New log record types for undo/redo

To implement the history list we should devise a new type of log record for logging undo
and redo operations in the history undo model. Such log records must have the follow-
ing characteristics: first, although they have to contain the undo and redo information
for a transaction rollback and crash recovery, they should avoid duplicates of the same
information. If a system supports only page-oriented undo, the undo information of undo
operations is the same as the redo information of redo operations, and vice versa. Therefore,
in this case, keeping both undo and redo information is duplicating the same information,
which causes severe space overhead considering that undo and redo operations are fre-
quently executed in authoring processes. Second, they have to contain status information
to identify whether the logged operations remain in effect in the database. By skipping the
operations that are already undone, we can minimize the processing overhead of rollback
caused by the problem in the history undo model described in Section 3.

The existing log record types used in ARIES are not applicable to user-interactive undo
since they do not have the above characteristics. The CLRs of ARIES are not appropriate
for logging undo and redo operations because of the absence of undo information. Since
normal log records contain both undo and redo information for logged operations, these
can be used for logging undo and redo operations. However, these require large log space
overhead due to the replicated information and also suffer from the repetition problem
of the history undo model. Figure 5 shows the processing overhead at the time of a
transaction rollback. The following notations are used here: a white circle represents a
normal log record, and a shaded circle a CLR; a double-lined arrow from a log record
indicates PrevousLSN its previous log record belonging to the same transaction
and a dotted arrow the UndoNextLSN of the CLR; characters written in a circle identify
the executed update operation; an odd number of quotation marks beside the characters
represent an undo operation, and an even number of quotes a redo operation. In Figure 5,

www.manaraa.com

transaction rollback request

Figure 5: A transaction rollback using the normal log record type.

the operations O, and O3 were already undone when the rollback of the transaction is
requested. However, the rollback process redoes the operations O; and O3 and logs these
actions in rg and r7. And then, it undoes the same operations and logs these actions in
rg and rqg. Therefore, it unnecessarily performs redoing and undoing of Oy and Os. That
is, when using normal log records, there is overhead that all the repetitive undo and redo
operations in forward processing are to be undone in the reverse order during a transaction
rollback. This is because the rollback process does not distinguish the operations already
undone.

We define a new type of log record, called a partial log record(PLR), for efficient support
of user-interactive undo. The PLR does not keep their own undo and redo information,
but keeps a pointer to reference another log record that contains this information. We call
the referenced one an original log record since it is a normal log record that corresponds
to the original update operation. In the proposed method, the PLR contains only the
minimal information to undo and redo; when more information is needed it is read from
the corresponding original log record. Therefore, PLRs minimize the log space overhead for
undo and redo operations. In addition, a new transaction rollback algorithm using PLRs
minimizes the transaction rollback overhead.

In a multi-user environment, it is essential to support logical undo for achieving high
concurrency as described in Section 4.1. The PLR incurrs two problems in supporting
logical undo. First, undos and redos after a logical undo should always perform logical
undo in order to find the page that holds the moved data since the recorded PLR for the
first logical undo has no undo and redo information. This is very inefficient since logical
undo requires additiontional accesses to the meta data. Second, during the redo pass of
crash recovery, logical redo should be performed for the PLR that was recorded for a
logical undo during forward processing since the PLR has no redo information. Supporting
logical redo is undesirable since it requires significant changes to ARIES that supports only
page-oriented redo.

To solve these problems we define another new type of log record, called a substitute log
record(SLR), that contains its own undo and redo information for a logical undo. When a
logical undo occurs, an SLR is logged instead of a PLR, and its undo and redo information
substitutes that of the original log record. Once an SLR is recorded, the following PLRs
for undos and redos of the same operation reference this SLR, not the corresponding
original log record. When these following PLRs are to be undone, page-oriented undos are

10

www.manaraa.com

Type
Type .

PreviousL SN
PreviousL SN

UndoNextL SN
UndoNextLSN

__ UndoRedoData
OriginalLSN
(a) The structure of a PLR. (b) The structure of an SLR.

Figure 6: The structures of new log records.

performed using the undo and redo information of the SLR. Therefore, SLRs minimize the
number of logical undos while they avoid duplicating the same undo and redo information.
Also, it is always possible to perform page-oriented redo for PLRs using the redo and undo
information of the corresponding original log record or SLR during the redo pass of crash
recovery. Therefore, SLRs solve both of the problems mentioned above.

Figure 6(a) shows the structure of a PLR. The OriginalLL.SN field contains the LSN of
the corresponding original log record or SLR. The UndoNextLSN field contains the LSN
of the next log record to be processed during transaction rollback or bulk undo. The Type
field indicates both whether this is a PLR or not and whether the recorded operation is
an undo or a redo operation. The PreviousLSN field contains the LSN of the previous log
record belonging to the same transaction. Figure 6(b) shows the structure of an SLR. An
SLR contains an UndoRedoData field instead of an OriginalLSN field. The UndoRedoData
field contains the undo and redo information for a logical undo. The Type field indicates
both whether this is an SLR or not and whether the recorded operation is an undo or a
redo operation. The PreviousLSN field and UndoNextLLSN field are the same as those of a
PLR. The next section presents recovery algorithms using PLRs and SLRs.

4.2.2 Recovery Algorithms

In this section, we present new recovery algorithms related to the user-interactive undo
facility. First, we describe user-interactive undo in forward processing of a transaction and
present an algorithm for rollback of transactions containing user-interactive undo. Next,
we show that the crash recovery algorithm of ARIES can be used in our method without
significant changes. Finally, we describe a bulk undo as a new operation for undoing
with one interaction a sequence of operations performed during forward processing of a
transaction.

User-interactive undo in forward processing of a transaction During forward
processing of a transaction, user-interactive undo is applied in the reverse order starting

from the last executed operation. User-interactive undo in forward processing can be
classified into three types of operations: undo of an original update operation, undo of

11

www.manaraa.com

<— OriginalLSN

‘ PreviousLSN O original log record
<€ - -+ UndoNextLSN PLR O SLR

Figure 7: An example of user-interactive undo logged by PLRs and SLRs.

an undone operation, and undo of a redone operation. The undo operation of an original
update operation undoes the corresponding original log record. This operation uses undo
information of the original log record and logs a PLR with the following values. The Type
is undo PLR; the OriginalLSN is the LSN of the original log record that has just been
undone; the PreviousLSN is the LSN of the log record that has most recently been logged
by the same transaction; the UndoNextLSN is the PreviousLSN of the original log record.
This value of UndoNextLSN indicates that the previous log record of the original log record,
but not the previous log record of the PLR, is the next log record to be rolled back during
a transaction rollback. When a logical undo occurs, an SLR is recorded instead of a PLR.
The SLR’s Type is undo SLR, and its UndoRedoData is undo and redo information for
the logical undo. Its PreviousLSN and UndoNextLLSN are the same as those of a PLR.

Figure 7 shows an example of user-interactive undo logged by PLRs. White circles rep-
resent normal log records, dot-filled circles PLRs, and grid-patterned circles SLRs. Single-
lined arrows indicate OriginalLSNs pointing to the corresponding original log records of
the PLRs, and dotted arrows UndoNextLSNs pointing to the previous log records of the
original log records, and double-lined arrows PreviousLSNs. In Figure 7, there are two
continuous undo operations logged by r4 and r5. The record r4 is an undo PLR that
records a page-oriented undo of r3; its original log record, next log record to be undone,
and previous log record are r3, ro, and r3, respectively. The record r5 is an undo SLR that
records a logical undo of r9; its next log record to be undone and previous log record are
r1 and ry4, respectively.

An undo operation of an undone operation is the same as a redo operation of the
original operation. The undo of a PLR logged for an undone operation is performed using
the redo information in the original log record or the undo(or redo) information in the
undo(or redo) SLR. This action is also logged by a PLR with the following values. The
Type is redo PLR, the OriginalLSN and the UndoNextLSN are the same LSNs as those
in the PLR that has been undone. The undo of an SLR logged for an undone operation
is performed using its own undo information. This action is logged by a PLR with the
following values. Its UndoNextLLSN is the same as that of the SLR, and its Original LSN
is the LSN of the SLR. When a logical undo occurs, an SLR. is recorded instead of a PLR.

12

www.manaraa.com

The SLR’s Type is redo SLR and its UndoRedoData is undo and redo information for the
logical undo. Its PreviousLSN and UndoNextLLSN are the same as those of the PLR. In
Figure 7, there are two continuous redo operations logged by r¢ and r7. The record r¢ is
a redo SLR that records the logical undo of undo SLR r5. Therefore, r4 points to r as its
next log record to be undone. The record r7 is a redo PLR that logs undoing the undone
operation logged by undo PLR r4. Therefore, r; and r4 point to the same original log
record, r3, and the next log record to be undone, ro.

An undo operation of a redone operation is the same as an undo operation of the
original operation. Except that the type of operation is undo, this operation is processed
in almost the same way as in the redo operation that has just been described. The undo
of a PLR logged for a redone operation is performed using the undo information in the
original log record or the redo(or undo) information in the undo(or redo) SLR. This undo
action is logged by a PLR with the following values. The Type is undo, the OriginalLSN
and the UndoNextLSN are the same LSNs as those in the PLR that has been redone. The
undo of an SLR logged for a redone operation is performed using its own undo information.
This action is logged by a PLR with the following values. Its UndoNextLSN is the same
as that of the SLR, and its OriginalLSN is the LSN of the SLR. In Figure 7, there are two
continuous undo operations logged by rg and r9. The record rg is an undo PLR that logs
undoing the redone operation logged by undo PLR r7. Therefore, rg and r7 point to the
same original log record, r3, and the next log record to be undone, ro. The record rg is an
undo PLR that records undoing the redone operation logged by redo SLR r¢. Therefore,
r9 points to g as its original log record, and 7 as its next log record to be undone.

A transaction rollback algorithm The history undo model has the problem that the
transaction rollback takes much more time than is necessary in case the transaction contains
repetitive undone and redone operations. For resolving this problem, we propose a new
transaction rollback algorithm that avoids executing unnecessary operations by skipping
these repetitive undo and redo operations using the Type and UndoNextLSN fields of PLRs
and SLRs. The algorithm is as follows. Let Ry rent be the last log record of a transaction
to be rolled back.

Algorithm Transaction Rollback:
1. Read Reyrrent-

2. If Reyrrent 18 a normal log record, do the corresponding undo action and write a CLR
for this action; set the UndoNextLSN of the CLR to the PreviousLLSN of Reyrrent;
set Reyrrent, @ log record to be accessed next, to the PreviousLSN of Reyrrent-

3. If Reyrrent 18 @ CLR, set Reyrrent to the UndoNextLSN of Royrrent-
4. If Reyrrent 18 @ PLR or an SLR, do the following actions:

(a) if the Type of Reiyrrent is undo, go to Step 4(c);
(b) if the Type of Reyrrent is redo, do the following actions:

i. if Reyprent is a PLR, read Rypiginal the log record referenced by the
OriginalLSN of Reyrrent;

13

www.manaraa.com

ii. do the corresponding undo action and write a CLR for this action; set the
UndoNextLSN of the CLR to the UndoNextLLSN of Reyrrent;

(c) set Reyrrent to the UndoNextLSN of Reyrrent-
5. go to Step 1.

During transaction rollback, SLRs can be handled in almost the same way as PLRs. It
is because SLRs are recorded instead of PLRs when logical undos occur, and SLRs contain
the same kind of information as PLRs except that SLRs contain undo information instead
of OriginalLSN. This algorithm handles SLRs in the same way as PLRs except that undoing
SLRs skips Step 4(b)i a step to access the original log records. For ease of explanation,
we regard SLRs as PLRs hereafter.

This algorithm has two skipping processes, which skip the log records already undone
in transactions. First, in Step 4(a), when the Type of R.yyrent is undo, the algorithm skips
undoing it, since the original operation has already been undone before the rollback. This
is similar to the idea used in ARIES that never undoes CLRs. Second, in Step 4(c), it skips
all the log records between the PLR and the corresponding original log record of the PLR
since the next log record to be undone is the UndoNextLLSN instead of the PreviousLSN
of Reyrrent- That is, if there are n undo operations before a transaction rollback request,
the LSN of the next log record to be accessed after undoing the log record for the n-th
undo is the PreviousLSN of the corresponding original log record, not the PreviousLSN of
the current log record. This means it skips at least (n 1) PLRs between the PLR and
the original log record. Though, unlike in ARIES; this skipping area includes both undo
and redo PLRs, we can still use the UndoNextLSN concept since we follow the history
undo model. In this model, if the n-th undo operation is redo, the state reached by this
operation is the same as the one reached by the original operation. Therefore, undoing the
n-th operation means undoing the original operation. These skipping processes, which skip
the repetitive undo and redo operations, reduce the number of log records to be processed,
and therefore, enable faster rollback of transactions.

Figure 8 shows an example of a transaction rolled back by the proposed algorithm. At
the requesting point of the transaction rollback, the operation Oy was undone at r; and
redone at rg, and the operation O3 was undone at r4. The rollback process has undone
only two operations instead of six; it has undone the operation O, that was redone at rg
and the operation O; at r1, but has skipped the log records r5, r4, 73, and 9. In this way
the proposed algorithm skips undoing repetitive undo and redo operations and undoes only
the operations still reflected in the dat abase.

Crash recovery algorithms We utilize crash recovery algorithms of ARIES, which
consist of the analysis pass, redo pass and undo pass. User-interactive undo has no effect
on the analysis pass of determining the starting point of the redo pass and loser transactions.
During the redo pass of repeating history, we have to perform additional operations that
read the redo information from the original log records when redoing PLRs. During the
undo pass, we use the same transaction rollback algorithm as mentioned above.

Bulk undo A bulk undo is defined as a new operation that undoes a sequence of user
operations with just one interaction. The bulk-undone operations can be undone like an un-

14

www.manaraa.com

> VGT .a r7 .z F:
O original log record

transaction rollback request
PR @ ar

Figure 8: An example of a transaction rollback.

done operation. Before requesting bulk undo operations, undopoints should be established
during forward processing of a transaction to mark the states to be restored. When a user
requests establishing an undopoint at any state, the LSN of the latest log record written by
the transaction, called UndopointLSN, is stored in virtual storage and the corresponding
undopoint identifier is returned. A bulk undo to an undopoint undoes all the log records
from the last to the undopoint and writes PLRs for these actions. The PLRs logged by
a bulk undo keep additional information of the undopoint identifier to differentiate them
from other PLRs for ordinary undo operations.

The bulk undo to an undopoint resembles partial rollback to a savepoint, but differs
in that it allows undoing bulk-undone operations. This is possible since we do not release
the locks acquired after the undopoint and log the bulk undo operation using the undoable
PLRs.

During the bulk undo, like in a transaction rollback algorithm, there are skipping
processes, which skip the log records already undone as well as repetitive undo and redo
operations. After a sequence of operations is bulk-undone, these operations can be redone
by one undo operation. This example is shown in Figure 9. Dark circles represent PLRs
written for the operations that were undone or redone by bulk undo operations. Undopoint;
was established after executing the operation O;. At ¢;, a bulk undo to Undopoint; was
requested. This operation undid two operations, O4 and Os, but skipped r3 and ro written
for the operation Oj since it had already been undone. At 5, after executing the operation
Os, two undo operations were requested. The first one undid log record rg and wrote this
action at rg; the second one undid a bulk undone operation from r7 to rg and wrote these
actions at 19 and 7.

Figure 10 shows another example of bulk undo operations with two undopoints. Undopoint;
was established after executing the operation Oy and Undopoints after Os. At t1, a bulk
undo to Undopoint; was requested. This operation undid two operations, O4 and Og, but
skipped r3 and ry written for the operation Os since it had already been undone. At to,
after executing the operation Os, a bulk undo to Undopoints was requested. This opera-
tion undid log records from rg to r5: it undid operation Os, redid operation O3, and wrote
these actions at rg and rqig, but skipped rg and r; written for the operation O4 since it

15

www.manaraa.com

Undopoint,

Figure 9: An example of a bulk undo operation and its redo.

Undopoint; Undopoint,

ty

Figure 10: An example of bulk undo operations with two undopoints.

had been executed and undone after Undopoints. In ARIES, this scenario is not possible
since after the first partial rollback to Undopointy, Undopoints is no more outstanding as
described in Section 4.1.

The bulk undo is useful for both the users and the system. It is convenient for the
users since they can undo a sequence of operations with just one simple interaction. From
the system’s viewpoint, the bulk undo is efficient since it reduces interactions between the
user and the system; it also reduces the number of log records to be processed during bulk
undo by skipping repetitive undo and redo operations.

4.3 Performance Analysis

As described in the previous section, the proposed method can be implemented by extend-
ing ARIES. This section analyzes the overhead of extending to support user-interactive
undo by comparing our method with ARIES. This comparison is restricted to undo opera-
tions since redo operations are not provided by the partial rollback facility in ARIES and
cannot be compared. We also restricted this comparison to page-oriented undo only since
the probability that logical undo occurs due to uncommitted updates of one transaction
being moved to a different page by another transaction is relatively low. We treat a partial

16

rollback as a bulk undo operation in the proposed method.

Generally, it is very complex to analyze the performance of recovery method since one
has to take into account a number of aspects. The most important measures as described
by Reuter[13] are as follows: 1) overhead during normal database processing; 2) recovery
speed after a failure; 3) space requirement of the log file. The overhead during normal
database processing and speed of crash recovery can be analyzed by the log access time,
data access time, and execution time. If the same transaction were executed, our method
and ARIES would require the same data access time and execution time, but different log
access time since they use different log record types for undo operations. The log access
time is proportional to the number of log records to be read, the number of log records
to be written, and the size of a log record. We use these factors to analyze the overhead
during normal database processing and recovery speed after a failure.

During normal database processing, transactions may be in forward or rollback process-
ing. In forward processing, although the proposed method writes PLRs for undo operations
while ARIES writes CLRs, the numbers of log records read and written by the two meth-
ods are identical. In rollback processing, the two methods access the same number of log
records since both of them skip the log records already undone, undo other log records,
and log these undo actions. Therefore, during normal database processing, the proposed
method accesses the same number of log records as ARIES.

Restart recovery consists of the analysis pass, redo pass, and undo pass. During the
analysis pass, two methods read the same number of log records since they have recorded
the same number of log records during the normal database processing. However, during
the redo pass, the proposed method has to read the original log records of PLRs to get the
redo information in case their updates have not yet been reflected on the database. This
is because PLRs do not keep the redo information to avoid the replication of the same
information. In the worst case, the overhead is significant since reading the original log
record requires reading another log page; however, this overhead may be reduced when the
original log record is stored in the same log page containing the PLR and when the original
log records for a sequence of PLRs are stored in the same log page. During the undo pass,
the number of log records to be read and written are identical in the two methods since
the undo pass is similar to transaction rollback.

The size of a PLR is quite smaller than that of a CLR. This is because a CLR keeps
the redo information while a PLR only keeps the LSN of the corresponding original log
record. Redo information in a CLR is quite larger in size than an LSN and can be very
large in some cases depending on the types of operations that have been logged.

Compared with ARIES, the proposed method performs the normal database processing
as fast or even slightly faster since it accesses the same number of log records whose sizes
are smaller than CLRs of ARIES. Similarly, our method performs the analysis pass and
undo pass during crash recovery as fast as or even faster than ARIES. During the redo
pass, however, if the database already reflects the PLRs” updates, our method works faster
than ARIES; otherwise, it has additional overhead of reading the corresponding original
log records. The overall performance of crash recovery is comparable to that of ARIES in
spite of the additional overhead in the redo pass since it is as fast as or even faster in the
analysis and undo passes.

The space requirement of the log file can be expressed by the number of log records

17

www.manaraa.com

written times the size of a log record. Since both methods have the same number of log
records to be written and the size of a PLR is shorter than a CLR, the space requirement
of the log file in our method is slightly smaller than in ARIES.

In summary, the proposed method provides performance comparable to that of ARIES
in normal database processing, crash recovery, and space requirement. This result indi-
cates that our method supports the user-interactive undo without performance degradation
compared with existing recovery facilities, especially those in ARIES.

5 Conclusions

During authoring processes in new DBMS applications such as software development, hy-
permedia authoring, and CAD, there are frequent interactions between users and the sys-
tem. Therefore, the applications should support such facilities that make these interactions
easily. In particular, in authoring processes, users need user-interactive undo for correcting
their trials and errors easily by undo and redo operations.

Previous research on user-interactive undo has been restricted on its models and user-
interactive undo has been provided by the application programs themselves. Since the
implementation of user-interactive undo is quite complex, it poses significant burden to
application programmers. Moreover, if an application employs a DBMS, it has additional
overhead for handling the data the DBMS itself updates.

In this paper, we propose a new recovery method with which a DBMS can support
user-interactive undo. The proposed method can be implemented by extending ARIES, a
well-known recovery method. In particular, we support the user-interactive undo without
altering the basic idea of a crash recovery facility in ARIES. We adopt the history undo
model as our undo model because it has a nice property of being able to roll back to any
previous state. We have proposed the notion of the PLR and SLR that allows redo of
undone operat ions and resolves the repetition problem of the history undo model. The
primary role of the SLR is to avoid logical redo and, at the same time, to r educe the
number of logical undos.

The proposed method provides both user-controlled undo and redo operations in a
DBMS while the partial rollback facility in ARIES provides only undo operations. In
addition, its performance is comparable to that of ARIES. In this paper, we present two
solutions to the problem in the history undo model: the first is an algorithm that guarantees
fast rollback of a transaction in spite of repetitive undo and redo operations; the second is
a bulk undo operation by which a user can restore the database to a predetermined state
with one interaction. Providing user-interactive undo in the DBMS is a new concept, and
we expect that our new DBMS facilities relieve application programmers of the overhead
of implementing user-interactive undo themselves in DBMS applications.

References

[1] Archer, J.E., Conway, R., and Schneider, F.B., “User Recovery and Reversal in
Interactive Systems,” ACM Trans. on Program. Lang. Sys., Vol. 6, No. 1, pp. 1 19,
Jan. 1984.

18

www.manaraa.com

2]

Berlage, T., “A Selective Undo Mechanism for Graphical User Interface Based on
Command Objects,” ACM Trans. on Computer-Human Interaction, Vol. 1, No. 3,
pp- 269-294, Sept. 1994.

Bernstein, P.A., Hadzilacos, V., and Goodman, N., Concurrency Control and Recovery
in Database Systems, Addison-Wesley, 1987.

Ginige, A., Lowe, D.B., and Robertson, J., “Hypermedia Authoring,” IEEE Multi-
media, pp. 24-35, 1995.

Gray, J. et al., “The Recovery Manager of the System R Database Manager,” ACM
Computing Surveys, Vol. 13, No. 2, pp. 223-242, June 1981.

Gray, J. and Reuter, A., Transaction Processing: Concepts and Techniques, Morgan
Kaufmann, 1993.

Haerder, T. and Reuter, A., “Principles of Transaction-Oriented Database Recovery,”
ACM Computing Surveys, Vol. 15, No. 4, pp. 287-317, Dec. 1983.

Kim, W., Modern Database Systems, The ACM Press, 1st Edition, 1995.

Korth, H. and Speegle, G., “Long-Duration Transactions in Software Design Projects,”
In Proc. of the Sizth Intl. Conf. on Data Engineering, IEEE, pp. 568-574, Feb. 1990.

Korth, H., Kim, W., and Bancilhon, F., “On Long-Duration CAD Transactions,”
Information Sciences, Vol. 46, No. 1-2, pp. 73 108, 1988.

Mohan, C. et al., “ARIES: A Transaction Recovery Method Supporting Fine-
Granularity Locking and Partial Rollback Using Write Ahead Logging,” ACM Trans.
on Database Systems, Vol. 17, No. 1, pp. 94 162, Mar. 1992.

Mohan, C. and Levine, F., “ARIES/IM: An Effective and High Concurrency Index
Management Method Using Write-Ahead Logging,” In Proc. Intl. Conf. on Manage-
ment of Data, pp. 371-380, ACM SIGMOD, 1992.

Reuter, A., “Performance Analysis of Recovery Techniques,” ACM Trans. on Database
Systems, Vol. 9, No. 4, pp. 526 559, Dec. 1984.

Prakash, A. and Knister, M.J., “A Framework for Undoing Actions in Collaborative
Systems,” ACM Trans. on Computer-Human Interaction, Vol. 1, No. 4, pp. 295-330,
Dec. 1994.

Thimbleby, H., User Interface Design, Addison-Wesley, 1990.

Wright, P., “Designing the Human-Computer Interface to Hypermedia Applications,”
In Book Designing Hypermedia for Learning, (Jonassen, D.H. and Mandl, H. eds.),
Springer-Verlag, 1990.

19

www.manaraa.com

